
www.totalview.io TotalView by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0720CK20)

Introduction

Parallel applications are common everywhere. Nowhere is it more noticeable then for companies stream-

ing video or using web-based applications that are always presenting different content based on user

requests. In these industries, applications get requests from many users and each one is serviced by a

process or thread. The number of threads and processes is based on the number of users on the system at

any given time. Many times, threads get created and destroyed, however in some cases the memory stays

allocated. Other times applications have their threads and processes stick around. These long running

processes can cause major memory leaks which multiply by the size of the data feed. Memory bugs, a mis-

take in the management of heap memory, lead to rapid slowdowns and even crashes of the system.

W H I T E PA P E R

Finding Memory Leaks and Errors
in Parallel Applications

WHITE PAPER

1 | Finding Memory Leaks and Errors in Parallel Applications

www.totalview.io TotalView by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0720CK20)

Memory bugs are hard to track down because a variety

of different situations cause them including, overwriting

the stack, not freeing the heap, or freeing it at the

wrong time. It’s difficult to trace back to a specific line

of code because it can take a long time to manifest.

Overall, memory bugs can have a disastrous effect on

an applications usability. Having to boot everyone off

servers periodically and restart doesn’t suffice when

people rely on these servers. Luckily, there are solutions

and we explain the root cause and how to resolve these

bugs in this paper.

Factors Leading to Memory Bugs
Memory bugs can occur in any program and are caused

by several factors:

•	 Failure to check for error conditions.

•	 Relying on nonstandard behavior

•	 Failure to free memory.

•	 Dangling references.

•	 Array bounds violations

•	 Memory corruption.

These cause programs to crash and generate incorrect

random results, or lurk in the code base for long periods

of time — only to manifest themselves at the worst

possible moment.

Leaks are difficult to track down even on a single

application running on a desktop. They are much more

vexing when encountered on a distributed, parallel

system. Developers write parallel programs for situations

with large problem sets, so the program naturally ends

up loading a significant amount of data and using a lot of

memory.

Classifying Memory Errors
Programmers need to pay attention to heap memory

because programs explicitly manage heap memory

rather than implicitly at compile or run time. There are

several ways that a program fails to properly use heap

memory. We’ll be describing this in terms of the C

malloc() API. However, similar errors can be made using

the C++ new and Fortran90 allocate statements.

MALLOC ERRORS

Malloc errors occur when a program passes an invalid

value to one of the operations in the Heap Manager API.

This could happen by copying the value of a pointer into

another pointer, and then at a later time, both pointers

are passed to free().

DANGLING POINTERS

A dangling pointer references previously deallocated

memory. Any memory access through a dangling pointer

leads to undefined behavior. Programs with dangling pointer

bugs may appear to function without any obvious errors.

MEMORY BOUNDS VIOLATIONS

Individual memory allocations returned by malloc()

represent discrete blocks of memory with defined sizes.

Any access to memory immediately before the lowest

address, or after the highest address in the block of

memory results in undefined behavior.

READ-BEFORE-WRITE ERRORS

Reading memory before initialization is a common error.

Many compilers identify reads before initialization for

local variables. Detecting reads before initialization

of memory through a pointer is much more difficult.

Dynamic memory is affected, since it is always accessed

through a pointer.

WHITE PAPER

2 | Finding Memory Leaks and Errors in Parallel Applications

www.totalview.io TotalView by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0720CK20)

Detecting Memory Leaks
Leaks occur when a program finishes using a block of

memory and discards all references to the block but fails

to call free. The impact of the leak depends on the nature

of the application. In some cases, the effects are minor;

in others, where the rate of leakage is high enough or the

runtime of the program is long enough, leaks significantly

change the performance of the program. This makes

leaks all that much more annoying, since they often linger

in otherwise well understood code. It is challenging to

manage dynamic memory in complex applications and

ensure that allocations are released exactly once so that

leak errors do not occur.

It’s hard to define “ceasing to use a memory block”

but an advanced memory debugger executes leak

detection by seeing if the program retains a reference

to specific memory locations. If it can’t be referenced

it should have been freed. To detect memory leaks,

you have to watch the malloc() call to the operating

system. A common method for tracking the malloc() is

by adding instrumentation code into the application that

replaces the malloc(). The main disadvantage of using

this approach is it means you need to recompile your

application which may lead to differences in behaviors

or time spent fixing compilation issues. The other issue

is that the instrumentation code may lead to applications

slowdowns.

Interposition is another method to watch malloc(). An

interposition library engages the application at runtime

to insert itself between the user’s application code and

the malloc() subsystem. The interposition library defines

functions for each of the memory allocation functions.

These functions get called by the program whenever

it allocates or frees a block of memory. It then passes

the call to the underlying operating system. Using this

method, the malloc() call still works normally and the

application doesn’t need to be re-compiled.

DETECTING HEAP BOUNDS VIOLATIONS

Blocks are often contiguous with other blocks of program

data. Therefore, if the program writes past the end of an

array, it usually overwrites the contents of some other

unrelated allocation. When the program is re-run, the

ordering of allocations may differ and the overwriting

occurs in a different way. This leads to extremely

frustrating “racy” bugs that manifest in different ways.

Sometimes they cause the program to crash, sometimes

result in bad data, and sometimes turn out to be

completely harmless.

MemoryScape Debugger
A feature with in TotalView, MemoryScape is an

interactive, dynamic memory analysis, and debugging

tool that reduces time spent on memory debugging.

It has a lightweight architecture that requires no

recompilation and modest impact on the runtime

performance of the program.

MemoryScape is designed for use with parallel

applications, providing both detailed information about

individual processes, and the high-level memory usage

statistics across all the processes. It includes support for

launching and attaching to all processes of a parallel job,

the ability to memory debug many processes from within

one GUI and do script-based debugging to use batch

environments.

ARCHITECTURE

MemoryScape uses the interposition method to detect

memory issues. Its library is called the Heap Interposition

Agent (HIA). The primary reason to choose the

interposition method is because it provides lightweight

memory debugging. The runtime performance of a

program being debugged performs similarly to when

the HIA is absent. This is critical for many applications, in

which a heavyweight approach might make the runtime

https://totalview.io/

WHITE PAPER

3 | Finding Memory Leaks and Errors in Parallel Applications

www.totalview.io TotalView by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0720CK20)

of programs exceed the patience of developers or even change

the effects because of a major lag effect in using the data.

PARALLEL ARCHITECTURE

MemoryScape uses a behind-the-scenes, distributed

parallel architecture to manage runtime interaction

with the user’s parallel program. MemoryScape starts

lightweight debugging agent processes, which run

on the nodes of the cluster where the user’s code is

executing. These processes are responsible for the low-

level interactions with the individual local processes and

the HIA module that is loaded into the process being

debugged. The processes communicate directly with the

MemoryScape front-end.

COMPARE MEMORY STATISTICS

Many applications have expected memory usage

behaviors. They may be structured so that all the nodes

allocate the same amount of memory or some similar

pattern. If such a pattern is expected or if the user wishes

to examine the set of processes to look for patterns,

MemoryScape has a memory statistics

window that provides memory usage

statistics in several graphical forms (line,

bar, and pie charts) for all or a subset

of the processes. Users can select the

set of processes that they wish to see

statistical information about. The view

represents the state of the program at

that point in time. The debugger process

controls drive the program to a new point

in execution and then update the view

to look for changes. If any processes

look out of line, the user can look at the

detailed status of the heap memory.

LOOK AT HEAP STATUS

MemoryScape provides a wide range of

heap status reports. Whenever a process

has been stopped, a user can obtain a view

of the heap. This gives the user a great way to see the

composition of the program’s heap memory at a glance.

The view is interactive; selecting a block highlights

related allocations and presents the user with detailed

information about both the selected block and the full

set of related blocks. Users can filter the display to dim

allocations based on properties such as size or the shared

object they were allocated in.

DETECT LEAKS

MemoryScape performs heap memory leak detection

by generating a leak report. The resulting report lists all

the heap allocations in the program for which there are

not any valid references. A block of memory, that the

program is not storing a reference to anywhere, is a leak.

Users can observe leaks in the heap graphical display.

DETECT HEAP BOUNDS VIOLATIONS

MemoryScape provides supports for guard blocks, which

get allocated before and after heap memory. Since this

bit of memory is not part of the allocation, the program

MemoryScape GUI provides an interactive view of the heap.
Colors indicate the status of memory allocations.

WHITE PAPER

4 | Finding Memory Leaks and Errors in Parallel Applications

www.totalview.io TotalView by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0720CK20)

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome
complex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio
including solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source sup-
port, repository management, static & dynamic code analysis, version control, and more. With over 20,000 customers, Perforce is trusted by
the world’s leading brands to drive their business critical technology development. For more information, visit www.perforce.com.

should never read or write to that location. The HIA

can initialize the guard blocks with a pattern and check

the guard blocks for changes. Changes mean that the

program wrote past the bounds of the allocation.

USING MEMORYSCAPE INSIDE TOTALVIEW

Memory debugging data files can be loaded by

the memory module of the TotalView source code

debugger. This allows user to share powerful

debugging techniques, taking advantage of having

memory debugging and access to all the variables and

state data.

In Summary
Memory bugs can occur in any program. These types

of bugs are often a source of great frustration for

developers because they can be introduced at any time

and are caused by several factors. They lurk in a code

base for long periods of time and tend to manifest in

several ways.

REQUEST A FREE TRIAL

totalview.io/free-trial

This makes memory debugging a challenging task.

Commonly used development tools and techniques are

not specifically designed to solve memory problems and

can make the process of finding and fixing memory bugs

an even more complex process.

TotalView’s MemoryScape feature is an easy-to-use

memory debugging tool that helps developers identify

and resolve memory bugs. Its specialized features,

including the ability to compare memory statistics, look at

heap status, and detect memory leaks, make it uniquely

well-suited for debugging these parallel and distributed

applications.

See for yourself how TotalView can identify and resolve

your runtime issues faster.

https://totalview.io/free-trial

